摘要:
针对传统情感分析方法对微博短文本应用效果不佳的问题,提出将文本情感特征与深度学习模型融合的微博情感分析新机制.通过词向量计算文本的语义特征,结合基于表情字符的情感特征,利用卷积神经网络挖掘特征集合与情感标签间的深层次关联,训练情感分类器.实验结果表明,相比基于词典的机器学习模型,该机制将情感分析准确率与F度量分别相对提升21.29%和19.20%.该机制结合语义和情感特征,利用卷积神经网络的抽象特征提取能力,改善微博短文本的情感分析精度.
金志刚, 胡博宏, 张 瑞.
融合情感特征的深度学习微博情感分析
[J]. 南开大学学报(自然科学版), 2020,(5): 77-.