南开大学学报(自然科学版) ›› 2022 ›› Issue (2): 59-.

• • 上一篇    下一篇

一种基于InsightFace 算法的课堂人脸识别方法研究

  

  • 出版日期:2022-04-20 发布日期:2022-05-23

  • Online:2022-04-20 Published:2022-05-23

摘要: 采用人脸识别算法可以快速识别出教室中每个学生的身份,以掌握学生的出勤率信息,从而达到提升教学管理效率,促进教学质量提高的目的. 为了克服人脸识别算法应用在课堂环境中识别准确率低的问题,本文提出了一种改进的InsightFace 人脸识别算法. 该算法基于MobileNet V2 网络结构,将带有卷积注意力模块的CBAM-MobileNet 网络结构代替InsightFace 算法的ResNet 人脸嵌入网络,同时采用限制对比度自适应直方图均衡化方法对待识别数据进行预处理,从而提高人脸图像的质量,提升了人脸识别准确率. 改进后的算法在LFW和AgeDB-30 数据集上测试准确率分别达到98.75% 和88.60%,并且使用采集自课堂环境的Smart-Classroom 数据集分别对教室中前后排学生的大、中、小三种尺寸人脸进行测试,分别较原算法准确率提高0.1%、2.6%、8.0%.

Key words: 卷积神经网络, 深度学习, 人脸识别, 注意力机制, 直方图均衡