摘要: 在认知无线电网络中,由于噪声不确定性引起的聚类重叠,导致能量检测的性能明显降低.针对噪声 不确定对频谱感知的影响,提出了一种基于核空间优化支持向量机的合作频谱感知算法.该算法融合了支持向 量机和核空间优化相关理论,将感知用户收集的数据统计量组合成向量,使用Fisher准则对该向量集进行相关运 算,得出使各类数据在高维空间中分离度最高的核函数参数.之后使用支持向量机算法对训练向量进行训练,得 到最优的频谱感知分类器.仿真结果表明,基于核空间优化支持向量机的合作频谱感知算法在噪声不确定情况 下优于传统的合作频谱感知算法.